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Abstract—This paper introduces Precision Trade-Off Floats
(PT-Floats). This number system uses the concept of Tapered
Precision, a concept introduced by R. Morris in 1971 and later
exploited in the Unum formats, most notably by the Posit number
system. The idea is to trade off exponent bits with fraction bits
according to the application domain. In general, the numbers
having an absolute value close to 1 are given more fraction bits
and fewer exponent bits, and the numbers with very small or
extensive magnitudes are given more exponent bits and fewer
fraction bits. This way, near-unit values are kept at high precision
while the other values span a vast dynamic range. This work
proposes a solution to the problem of redundant representations
in the Unum I system. This solution allows the exponent size
to be stored as an unsigned binary number, using much less
space than Posit’s es field plus regime bits. Our experimental
results indicate that the new format reduces hardware resources
and energy consumption. We showcase examples where half-size
PT-Float units have enough precision, accuracy, and dynamic
range to replace full-size IEEE-754 units.

Index Terms—Tapered Precision, Floating-Point, Unum Num-
bers, Posit, Computer Arithmetic.

I. INTRODUCTION

Since most algorithms require arithmetic operations on
real numbers, floating-point formats are the most extensively
adopted approximation of real numbers. During the 1960s
and the 1970s, there was no ubiquity in the floating-point
format. Each computer manufacturer developed its floating-
point system, resulting in floating-point inconsistency across
platforms. In 1985, the IEEE Standard for Floating-point
Arithmetic (IEEE-754) was established by the Institute of
Electrical and Electronics Engineers (IEEE) and is nowadays
the most common representation of real numbers on comput-
ers. This format has been reviewed in 2008 [1] and 2019 [2],
but there were only minor changes between them to maintain
compatibility with the existing implementations. The problems
that have been identified in the IEEE-754 Standard [3], [4],
[5] are the following:

e Overflow and Underflow: overflowing to —oo or +oo
and underflowing to O increases the relative error by an
infinite factor.
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e No Gradual Overflow and Fixed-Precision: overflow hap-
pens suddenly after running out exponent bits; precision
is flat across a vast range, then abruptly collapses.

o Wasted bit-patterns: there are too many NaN represen-
tations, two bit-patterns are used to represent 0, the
“negative zero” (0~) and the “positive zero” (0T), and
another two bit-patterns to represent infinity, —oo, and
+00.

o Exponents usually waste too many bits.

Over the years, several systems and techniques have been
proposed to overcome these challenges. R. Morris, in his 1971
seminal 2-page paper [6], suggested a “tapered” system to
allow trading-off exponent bits with fraction bits and vice-
versa [7]. In 2013, John L. Gustafson introduced a new
binary representation of real numbers, a number system called
Universal Numbers or Unum [3], [8], [9]. So far, there are
three different Unum types. Type-I [3] is a superset of the
IEEE-754 Standard. This format uses a variable-length storage
format for the exponent and fraction fields and a “ubit” at the
end of the fraction that indicates if the number is an exact
float (u=0) or lies in the open interval between two consecutive
floats (u=1). Type-II [10] enables a clean mathematical design
based on projective reals and relies on lookup tables. It
directly maps signed integers onto a projective real number
line. Type-IIl, or Posits [11], [12], was introduced in 2017
as a hardware-friendly version with all the advantages of the
previous types. Nowadays, even though many shortcomings
have been pointed out in the IEEE-754 Standard, it is still the
most commonly implemented method in computing machines
to perform floating-point arithmetic.

This paper introduces the Precision Trade-Off Floating-
Point (PT-Float) number system. PT-Float implements an
efficient variation of the tapered precision originally suggested
by R. Morris and later pursued by the Unum systems. The PT-
Floats go back to using a field to represent the variable size
of the exponent like Unum I but solve its redundant repre-
sentations problem by introducing an exponent normalization
scheme. This solution provides the intended tapered precision
without unnecessarily losing precious precision bits like the
Posit regime bits. As shown in the following sections, the new
PT-float number system can provide more precision, accuracy,
and dynamic range than the Posit numbers with the same size



while still offering more dynamic range that IEEE-754 floats
twice the size. Moreover, the hardware resources to implement
PT-Float units are similar to those of Posits.

II. THE PT-FLOAT FORMAT

The present PT-Float format explores and combines ideas
from the Unum Type-I and Type-III formats, explicitly using
an exponent width field and dynamically varying fraction and
exponent widths. It solves the Type-I redundant representations
problem using a complementary-valued hidden bit in the
exponent. Like the Posits, it eliminates using NaN, —oo, 400,
+0 and —O0 representations.

A. Generic Format

The PT-Float format is designed to represent a floating-point
number x with significand s and binary exponent e:

=5 x2° (D

The format uses three fields: the explicit exponent (E), the
explicit fraction (F), and the exponent size in bits (ES), as
shown in Figure 1. The notation PT-Float<D_W, ES_W>
represents a PT-Float number with D_W bits, whose exponent
size ES can be specified with ES_W bits. Hence, the fraction’s
number of bits F'_W is given by the remaining free bits:

FW=DW-ESW--ES 2)
E [F ES
(Exponent) ‘ ‘ (Fraction) H (Exponent Size)
| | | |
! ES ! F.W ! ES_W !
i ow i

Fig. 1. Generic PT-Float representation format.

1) Exponent: The base-2 exponent e depends on the ES
value according to the following expression:

0, if £S =0, zero
—2B8 192 if ES =28-W _1 A E =0, subnormals

—Eps_1(2F9 —1) + Zf:%_l E; - 2%, normals
3)
The above equation shows that, for the normal numbers, the
exponent e is given in the one’s complement binary format:

e= (Eu)Eps-1Eps-1...E1Ep 4)

where Ey is the exponent hidden bit, obtained by negating
the most significant explicit bit:

Ey = FEgs—1 (5)

The one’s complement notation is unusual, but the two’s com-
plement format would make positive and negative exponents
asymmetric and leave the exponent -1 out.

The exponent hidden bit has two purposes: (1) it provides
the exponent sign information, and (2) it normalizes the

exponent by forcing its magnitude to be in the interval
[2F5-1 255 _1]. To have exponents outside this interval, one
must change the value stored in the ES field.

2) Significand: The significand s is given by its two’s
complement binary notation S:

S = (Sy).F (6)

where Sy is the significand’s hidden bit, and, to the right of
the binary point, F' is the fraction binary representation:

F=F F o.F_ rw_nF-rw (N
The hidden bit Sy is given by:

Iy
Sy = ®)
Fy

subnormals

normals

The significand hidden bit has two purposes: (1) it provides
the significand sign information, and (2), when Sy = Fq,
it normalizes the significand by forcing its magnitude to
be in the interval [271,1 — 2=F-W] for positive numbers or
[~1, -2t — 27 F-W] for negative numbers.

Table I presents numerical examples of the PT-Float<§, 2>
format to fully illustrate the extraction of the exponent value
(from the exponent field + hidden bit) and of the significand
value (from the fraction field + hidden bit).

B. Features

The PT-Float format’s main features are summarized in the
following subsections.

1) Tapered precision with minimal overhead: The PT-Float
format can trade off exponent and significand bits with the
minimal overhead of log2(ES) bits.

2) No redundant representations: In the PT-Float format,
no two binary combinations represent the same number.

3) No unused combinations: In the PT-Float format, all
binary combinations represent a number.

4) No Exceptional Patterns: The PT-Float format does not
have any patterns such as “NaN”, —oo, 400, oo, 07 and
07 . Instead, these particular cases are flagged in the hardware
implementation with “overflow”, “underflow” and “divide by
0” exceptions. This option simplifies the hardware.

III. ANALYSIS
A. Qualitative Comparison

Table II compares the most relevant features of PT-Float,
Unum Type-III (aka Posit), and IEEE-754. The IEEE-754
floats have a fixed exponent and fraction size, whereas the
PT-Float and Posit formats have extra information to indicate
the size of the exponent and, consequently, the fraction. These
variable-precision formats are sometimes criticized for not
having a constant relative error. The PT-Float offers a mid-
ground between the IEEE-754 and the Posits, as seen in
section III-C.



TABLE I
PT-Float<8, 2> numerical examples.

PT-Float<8, 2> Fields Extracted Values
ES | E | F exponent significand value comment

00000000 00 0 | 000000 no bits = 0 | (1)000000 = -1.0 -1.0

11000001 01 1 10000 O1= 11 (010000 = 0.5 1.0

11101010 10 11 1010 0)11 = 3 | (0).1010 = 0.625 5.0

00100001 01 0 01000 (10 =-1 | (1).01000 =-0.75 -0.375

11111111 11 111 111 111 = 7 | (0).111 = 0.875 112.0 max

11100011 11 | 111 000 111 = 7 | (1).000 =-1.0 -128.0 min

00000011 11 | 000 000 subnormal = -6 | (0).000 = 0.0 0.0 zero

00000111 11 | 000 001 subnormal = -6 | (0).001 = 0.125 0.001953125 minp

TABLE I
Qualitative comparison of IEEE-754, Posit and PT-Float.
Features IEEE-754 Posits PT-Float
[n-bit] [n-bit] [n-bit]

Portability/Reproducibility No Yes Yes
NaNs Representations Many None None
Infinity Representations 2 (—o0; +00) 1 (NaR) None
Zero Representations 2(0~;0t) 1 (0) 1 (0)

1 Implicit Leading Bit

Overflow Sudden: after all exponent bits used | Graceful: after all bits used as exponent | Graceful: after max number of exponent bits used
Underflow Gradual Gradual Gradual
Exponent Fixed-Size; Signed (Biased); Varying-Size; Signed (Unary) Varying-Size; Signed (1’s Complement);
0 Implicit Leading Bits 0 Implicit Leading Bits 1 Implicit Leading Bit
Significand Fixed-Size; Unsigned; Varying-Size; Unsigned Varying-Size; Signed (2’s Complement);

1 Implicit Leading Bit

1 Implicit Leading Bit

Precision Bits Fixed

Dynamically Varying

Dynamically Varying

B. Precision and Dynamic Range

The number of bits of the fraction F gives the precision.
The Dynamic Range (DR) is the ratio between the largest and
smallest positive representable numbers, minp (subnormal) and
maxp, given by

mazp = 97T (1 g PV () k)

mlnp _ 2722ES_W_1+2 « 2*[D_W7(2F‘S-W71)7ES_W]

9)
Hence, the dynamic range is approximately calculated by

ES_W
2773

DR = 22 (10)

Tables III, IV and V compare the dynamic range and
precision intervals for the PT-Float, IEEE-754, and Posit
formats.

C. Golden Interval

A number format’s Golden Interval (GI) is the positive
number interval where the numbers have equal or greater
precision than the IEEE-754 standard of the same data width.
The Golden Interval Exponent (GIE) is the binary exponent

TABLE III
PT-Float dynamic ranges and precision intervals.

D_W, ES_ W minp maxp () DR (logl10) F_W
8,2 279 0.875 x 27 4.76 3t06
16, 2 217 0.9995 x 27 7.22 11 to 14
16, 3 2132 0.984 x 2127 77.96 6to 13
32,3 o148 2127 82.78 | 221029
32,4 2382779 || 932767 19,731.31 13 to 28
64, 4 2382811 || 932767 19, 740.95 55 to 60
128, 4 9382875 || 932767 19,760.21 | 109 to 124

that defines the golden interval such that, if GIE=z, then the
golden interval is defined as the interval from 27% to 2%.
The Golden Interval Ratio (GIR) is the ratio between these
two limits and is used to compare the magnitude of the GIs.
Table VI shows GIE, GIR, and DR for selected IEEE-754,
Posit, and PT-Float formats.

Table VI shows that the PT-Floats always have a larger GIR
than the Posit numbers with the same size and almost always



TABLE IV
IEEE-754 dynamic ranges and precision intervals.

TABLE VI
Golden Interval Exponent (GIE), Golden Interval Ratio (GIR), and Dynamic
Range (DR) for the different formats.

D W minp maxp (=) | DR (logl0) | F W
- Format | Width | GIE | GIR (og10) | DR (log10)
-9
8 2 1.875 x 2 5.09 3 [EEE.754 p 509 509
16 224 1.999 x 218 12.04 10 Posit ES=1 8 ) 119 722
32 2—149 9128 83.39 23 PT-Float ES_W=2 3 2.68 476
64 2—1074 21024 631.56 52 IEEE-754 15 12.04 12.04
Posit ES=2 16 8 4.82 33.72
128 | 216494 || 16384 9,897.26 | 112 o
PT-Float ES_W=3 7 5.11 77.96
TEEE-754 127 83.39 83.39
TABLE V '
Posit dynamic ranges and precision intervals. Posit ES=2 30 20 12.04 72.25
PT-Float ES_W=3 63 38.83 82.78
D_W, ES minp maxp | DR (logl0) F_w PT-Float ES_W=4 31 19.57 1973131
8,1 2—12 212 7.22 0to4 TEEE-754 1023 631.56 631.56
16, 2 9—56 956 33.72 Oto 11 Posit ES=2 64 32 19.27 149.31
PT-Float ES_W=4 2 154.4 19740.
32,2 | 27120 | 2120 72.25 | 0to027 oat BS. > M | 105
IEEE-754 16381 9897.26 9897.26
64, 2 2248 2248 149.31 | 0to 59
- - Posit ES=2 128 48 28.90 303.44
128, 2 2 2 303.44 | 0to 123 PT-Float ES_W=4 4095 2466.34 19760.21

have a much larger DR than the IEEE floats with the same
size (except for the tiny 8-bit format). Moreover, the DR of
the PT-Float16 is similar to the DR of the IEEE-float32, and
the DRs of the PT-Float32(64) can be larger than the DRs of
the IEEE-float64(128), which indicates that the PT-Floats can
provide an adequate replacement for IEEE-floats with twice
the data size.

Figure 2 shows the number of fraction bits as a func-
tion of the exponent range for the PT-Float<32,3> and
PT-Float<32,4> formats (for normalized numbers). The
golden interval is highlighted, and the horizontal line shows
the IEEE-754 Float32 fixed precision (of normals). In the
golden interval, the PT-Float formats have more fraction bits
than the IEEE Float32 format. The precision of the PT-Floats
peaks at the unit value and decreases when receding from this
value, as expected from its tapered nature.

The golden interval of the PT-Float<32,3> is wider than
PT-Float<32,4>, and conversely, its dynamic range is smaller,
which illustrates the trade-off. Near the unit value, the
PT-Float<32,3> and PT-Float<32,4> achieve maximums of
29 and 28 precision bits, outperforming the IEEE Float32 by
6 and 5 bits, respectively. While the IEEE-754 floats overflow
sharply (right-end of the horizontal line, maximum exponent
= 128) or underflow (left-end of the horizontal line, minimum
exponent = -149), the PT-Floats gain or lose exponent bits to
overflow and underflow, respectively, gracefully.

D. Accuracy

This section analyzes the accuracy of the PT-Float<8,2>
format against the Posit<8,1> and the non-standard 8-bit
IEEE-754 floats (Float8). The Float8 has one sign bit, four

exponent bits, and three fraction bits. These 8-bit formats are
selected because they have comparable dynamic ranges, and
with only 8 bits, one can quickly analyze all the 256 combi-
nations. The golden interval and dynamic range properties for
these formats are given in Table VI.

Figure 3 compares the above three formats using the Dec-
imals of Accuracy metric, given in the figure’s vertical axis
and explained in [11]. The metric is computed for the positive
range of each number system, ordered from the minimum
positive (minp) to the maximum positive (maxp) representable
numbers of each format.

The PT-Float<8,2> is less accurate than the Float8 in the
left and right extremities. The Float8 has tapered accuracy on
the left as they use subnormals to obtain a gradual underflow.
On the right side, the floats abruptly overflow, but all the same
waste 14 NaN values. In contrast, since the PT-Float<8,2>
format also has tapered accuracy on the right side, its accuracy
gracefully degrades before the inevitable overflow.

The PT-Float<8,2> is also more accurate than the
Posit<8,1> in the extremities and the vicinity of the unit
value. Its wider GI shows that the PT-Float<8,2> numbers
have more accuracy than the Posit<8,1> along the whole
range. Both systems cover the 256 patterns and do not waste
combinations, except for the combination that means NaR for
the Posit.

Figure 4 compares the three formats using the Units of Least
Precision (ULP) metric: the distance between two consecutive
numbers. The ULP measures the resolution of a floating-point
format. The number of fraction bits of the Float8 is fixed to
3; hence, ULP = 273 x 2¢, depending exclusively on the
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Fig. 2. Exponent vs. fraction bits for PT-Float<32,3> and 32-bit IEEE-754
format (top); exponent vs. fraction bits for PT-Float<32,4> and 32-bit IEEE-
754 format (bottom)

fixed exponent bits. For the PT-Float<8,2> and Posit<8,1>
formats, the ULP variation slows as the numbers get closer
to one (more fraction bits) and accelerates as they recede
from one (less fraction bits). The PT-Float<8,2> has a higher
resolution for a considerable portion of the range than the
other formats, as shown by its lower and flatter ULP. Note
that the horizontal axis metric is not the numbers but their
index from the minimum positive to the maximum positive.
Hence, Figure 4 also shows the numbers’ density peaks around
the unit.

IV. HARDWARE IMPLEMENTATION

This section describes the implementation of a pipelined
Floating-Point Arithmetic Unit based on the new PT-Float
format, accepting D_W and ES_W as architectural parameters.
The unit has three main Functional Units (FUs): Unpack,
Process, and Pack. The Process unit supports four floating-
point operations: addition, subtraction, division, and multi-
plication. Table VII characterizes the FUs regarding latency,
throughput, and number of stages.

-log10(llog10(xyxi.1)I)

Decimals of Accuracy

20 40 60 80 100 120
Number index from minpos to maxpos

I PT-Float<8,2>
[ Posit<8,1>

25 T T T T

0.5

Decimals of Accuracy = -log10(|log10(xy/xi,1)|)

20 40 60 80 100 120
Number index from minpos to maxpos

Fig. 3. Decimals of accuracy comparison between PT-Float<8,2> and Float8
(top), and between PT-Float<8,2> and Posit<8,1> (bottom).
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Fig. 4. ULP comparison of Float8, Posit<8,1> and PT-Float<8,2>.

A. Unpack Module

The Unpack Module takes a PT-Float input and extracts the
exponent size, the exponent itself, and the fraction. This unit
is illustrated in the block diagram in Figure 5.

B. Process Module

After unpacking the exponent and significand, standard
floating point hardware can be used, provided they support



TABLE VII
PT-Float Functional Units.
Operation | Latency | Pipelined | #Stages | Throughput
(cycles) (op/cycle)
unpack 1 yes 1 1
add/sub 6 yes 6 1
mult 4 yes 4 1
div 6+F_W no 1 1/latency
pack 3 yes 3 1

ES ‘

F_W_MAX

is_subnormal

F_W_MAX+1

ES_MAX+1

\4 \4

Exponent Significand

Fig. 5. 1-stage pipelined Unpack module.

the maximum exponent and significant sizes. A macro chooses
the rounding mode: truncation or “round to the nearest, ties
even”. Two bits select one out of the four available oper-
ations. The addition/subtraction and multiplication modules
are pipelined. The divider is currently implemented as an
unpipelined subtract-shift sequential unit.

C. Pack Module

The Pack Module takes the exponent and significand values
produced by the Process module and outputs a PT-Float
number and interrupt flags, as shown by the block diagram
of Figure 6.

[ FUFlags Significand |

Rounded
Significand

Rounded Up
A 4

Adjust

Adjusted
Exponent

‘ Assemble ‘

Fig. 6. 3-stage pipelined Pack module.

Although not shown before, the FUs produce underflow and
overflow flags, which are inputs of the Pack unit. The packing
algorithm can also issue such flags, so these two sources of
flags are combined inside the module.

If the rounding mode is disabled (truncation mode), the
packing algorithm is the unpacking algorithm reversed: detect
subnormal mode, compute the hidden bits, shift the exponent
left and the significand right, and merge them into a PT-
Float word, appending the exponent size ES computed by the
Count Leading Bits module. The leading bits may be zeros for
positive or ones for negative exponents. The Assemble module
executes the described packing algorithm, receiving ES and the
unchanged exponent and significand from the FU.

If the rounding mode is enabled, the packing algorithm is
slightly more complicated, but this additional complexity is
also present in other formats. In this case, the significand
must be rounded and the exponent and its size eventually
adjusted. When the significand is rounded, if it is rounded up,
the exponent might need to be incremented. In the PT-Float
format, incrementing the exponent may also imply that the
exponent size needs to be incremented or decremented. The
Adjust module performs this function and outputs the adjusted
(or not) exponent and its size increment AFES, which may be
-1, 0, or +1.

D. Hardware Implementation Results

This section compares the ASIC implementation results for
the three formats, PT-Float, Posit, and IEEE-754 FPU, using
the Cadence RTL Compiler for the UMC 130 nm process.
The operating frequency limit was set to 200MHz, and no
attempt was made to increase it further. At the current stage
of development, frequency optimizations have not yet been
considered but will be in future developments. When 200MHz
has not been achieved, the maximum frequency achieved is
given. Silicon area and power consumption results are also
presented.

1) IEEE-754 vs. PT-Float: Table VIII compares the ASIC
implementation results of the PT-Float FPU with the IEEE-754
FPU. Both FPUs are parameterizable, so they are compared
with different configurations.

TABLE VIII
PT-Float vs. IEEE-754 silicon implementation results.

FPU Data Width | ExpSize Width | Rounding Mode | Area [mm?] | Power [mW] | Frequency [MHz]

0 45.19 6.26 200
49.89 7.01 200
98.31 13.30 200
104.58 14.08 200
112.36 14.25 200
123.95 15.38 200
304.70 40.13 175.19
344.93 38.94 190.25

16 3

3

PT-Float 32

67.66 7.44 200
267.34 2797 169.15

IEEE-754

—|=|=|e|=|o|~|=|~

These results show that the Float32 FPU is smaller than
the PT-Float<32,3|4> FPUs. This difference is explained
by the fact that the PT-Float FPU’s exponent and fraction
must be internally extended to their maximum size ES_MAX



and F_W_MAX. Another reason is the dynamically varying
exponent and fraction sizes, which require more complex Pack
and Unpack hardware.

However, replacing an IEEE-754 FPU with a smaller PT-
Float FPU may be possible and advantageous. For example, if
the PT-Float<16,3> replaces the Float32, it would be 1.36x
smaller. Referring to Table VI, the Float32 has GIR=DR=83
decades. The PT-Float<16,3> can offer GIR=5.1 and DR=78
decades as a replacement. Another example is to replace a
Float64 FPU (GIR=DR=632 decades) with a PT-Float<32,4>.
The latter is 2.64x smaller than the former but can offer
GIR=20 and DR=19731 decades as a replacement.

2) Posit vs. PT-Float: Since we do not yet have a Posit
FPU implementation, the FPGA results published in [13] were
used to estimate its silicon area (using the scale proposed
in [14]). We used 10 and 7 equivalent NAND?2 gates for each
FPGA LUT6 and FF, respectively. The Posit implementation
is a pipelined FPU with an adder and a multiplier in the
following standard configurations: Posit<16,1>, Posit<32,2>
and Posit<64,3>. The comparable PT-Float FPUs used sim-
ilar configurations and rounding modes: PT-Float<16,3>,
PT-Float<32,3> and PT-Float<64,4>. The results are pre-
sented in Table IX.

TABLE IX
PT-Float vs. Posit silicon implementation results.

‘ Format ‘ Configuration | ASIC Area [mm?]

<16,1> 31.77*
Posit <32,2> 97.79*
<64,3> 327.5*
<16,3> 34.42
PT-Float <32,3> 74.14
<64.4> 240.46

*Estimated

These results show that the PT-Float’s silicon area is similar
to or smaller than the Posit’s. The PT-Float<16,3> and
the Posit<16,1> have a similar silicon area. However, the
PT-Float<16,3> has GIR=5.1 and DR=78 decades, whereas
the Posit<16,1> has GIR=3.6 and DR=17 decades, only. The
PT-Float<32,3> uses 25% less area than Posit<32,2> but the
former has GIR=39 and DR=83 decades, whereas the latter has
GIR=12 and DR=72, only. Finally, the PT-Float<64,4> uses
nearly 36% less area than the Posit<64,3>, with GIR=154
and DR=19740 decades, compared to GIR=34 and DR=299
decades for the Posit<64,3>.

V. CASE STUDY: THE KNN ALGORITHM

The KNN algorithm is a supervised machine learning algo-
rithm that uses a labeled data set to classify test data points.
Given a test data point, the algorithm finds the K closest
labeled data points and classifies the test point with the most
used label among its K neighbors. The number of neighbors
K is an essential user-defined parameter: for each application,
there’s an optimal K value that ensures the best stability and

accuracy of the classification. A low K leads to overfitting,
and a large K produces underfitting.

A KNN application was implemented using a PT-Float C
library, using the following data types: the IEEE-754 double-
precision format (Float64), the IEEE-754 single-precision
format (Float32), and the PT-Float<32,4> format. With 52
fraction bits, the Float64 format is used as a reference to
compare the Float32 with the PT-Float<32,4>. Two exper-
iments were devised to compare these formats for accuracy
and dynamic range. The datasets were randomly generated
using the parameters given in Table X.

TABLE X
KNN parameters.

Parameter ‘ Value ‘
Number of datasets (benchmarks) 10
Spacial dimensions 2
Number of data points in each benchmark 100,000
Number of classification labels 4
Number of test points 100

1) Accuracy Experiment: In the first experiment, the value
of the dataset point coordinates ranges between 0.99999 and
1, and those of the test points range between 0.9 and 1. The
idea is to compare the accuracy of the PT-Float<32,4> with
that of the Float32 when the data spans a small interval of
near-unit values; the results are summarized in Figure 7.

100

80 |

60

Accuracy [%]

40 -

20 I
oL

Data Sets

[ PT-Float<32,4>
Il Float32

Fig. 7. Accuracy of classification for PT-Float<32,4> and 32-bit Floats.

The results show that the PT-Float<32,4> consistently has
a higher percentage of correct classifications than the Float32
numbers. The accuracy of the PT-Float is always above 90%,
whereas the accuracy of the Float32 is significantly poorer. The
results are unsurprising since the PT-Float<32,4> numbers
can have a maximum of 28 fraction bits for numbers near 1,
while the Float32 numbers only have 23. Hence, the Float32
lacks enough resolution to give accurate classifications to some
test points. Thus, the PT-Float<32.4> outperforms the Float32
in KNN problems where the data spans a small range. In this
application, the 32-bit PT-Float<32,4> can be a compelling
replacement for the 64-bit IEEE-754 format.



2) Dynamic Range Experiment: In the second experiment,
the dataset points and test points range between 0 and
10?2, The idea is to compare the dynamic range of the
PT-Float<32,4> with that of the Float32. All data points
fall within the range of these two formats. However, for
the Float32 format, the square distance between the labeled
and unlabeled points often falls outside their range. For this
format, most computed distances overflowed, resulting in an
inability to perform. Moreover, the overflow operations cause
the computed distance to be assigned to +co, with consequent
mathematical incongruities if these exceptions are not trapped.

The PT-Float<32,4> format performed correctly in all the
benchmarks because its dynamic range is greater than the
Float64, using half of the computer memory for the format.
The PT-Float<32,4> can satisfy the application requirements
while guaranteeing computational efficiency and low power.

VI. CONCLUSIONS

This paper proposes PT-Float, a new floating-point number
system with tapered precision. The new system has been
implemented in software and hardware, tested, and compared
to the IEEE-754 and Posit systems.

Like the Posit, the new system tackles the IEEE-754 floats’
fixed number of exponent and fraction bits. This inflexibility
creates shortcomings in dynamic range, accuracy, and preci-
sion. This work and previous works use dynamic exponent
and fraction sizes to solve this problem and increase precision
and dynamic range when needed.

This paper revisits the idea of using an extra field to
represent the size of the exponent. This idea has the problem
of redundant representations, as the same number can be
represented with exponents of different widths. This paper
proposes that the exponent has an implicit leading bit forced
to the opposite value of the explicit MSB.

The new implicit bit enforces normalization, provides sign
information and solves the redundant representations problem.
Unlike other formats that use a fixed-value leading implicit
bit to normalize the significand, using a dynamically varying
leading implicit bit for the exponent is a new and powerful
tool.

The PT-Float number system is a tapered precision system
that is more precise, accurate, and has a more dynamic range
than the Posit system. The exponent leading bit technique
proved significantly more efficient than the Posit’s regime
bits, which waste precious bits in an after-all unary exponent
representation.

A theoretical analysis of the new PT-Float format is pre-
sented, which shows that sensibly configured PT-Floats can
replace IEEE-754 floats as they can flexibly be more precise
near the unit or reach a farther range than IEEE-754 floats of
the same size.

Our studies generally indicate that a PT-Float FPU of half
the data size can replace a full-size IEEE-754 FPU if precision
or dynamic range can be traded off. However, this paper does
not claim that variable-relative-error formats can replace fixed-
relative-error formats like the IEEE-754.

Configurable hardware implementations of PT-Float and
IEEE-754 have been developed in Verilog and implemented
for the UMCI130nm ASIC technology. The FPUs include
the four basic two-operand operations: addition, subtraction,
division, and multiplication. For the same data width, the
results show that the PT-Float FPU is roughly 50% larger
and consumes twice the energy. However, since an IEEE-754
FPU can often be replaced with a half-data-size PT-Float FPU,
replacing a 32-bit IEEE-754 FPU with a 16-bit-PT-Float FPU
would save approximately 36% and 5%, in area and power,
respectively; replacing a 64-bit IEEE-754 FPU with a 32-bit
PT-Float FPU would yield area and power savings of roughly
156% and 99%, respectively.

The KNN application was used as a case study to compare
the PT-Float<32,4> performance against the IEEE Float32,
using the IEEE Float64 results as a golden reference. The
results showed that the PT-Float outperforms the 32-bit floats
and produces more similar results to the 64-bit floats.
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